

Cambridge Assessment International Education

Cambridge International General Certificate of Secondary Education (9–1)

CANDIDATE NAME				
CENTRE NUMBER		CANDIDATE NUMBER		

CHEMISTRY 0971/31

Paper 3 Theory (Core)

May/June 2019

1 hour 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your centre number, candidate number and name on all the work you hand in.

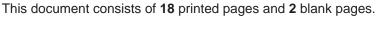
Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

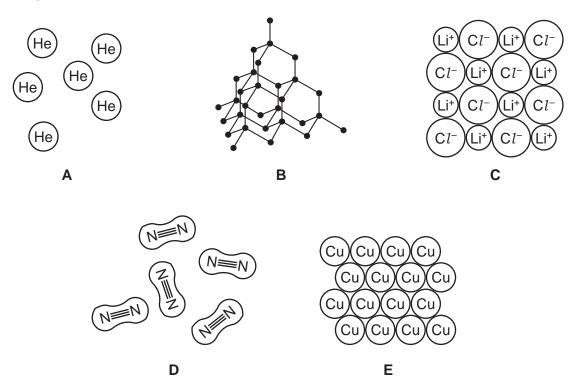
DO NOT WRITE IN ANY BARCODES.

Answer all questions.

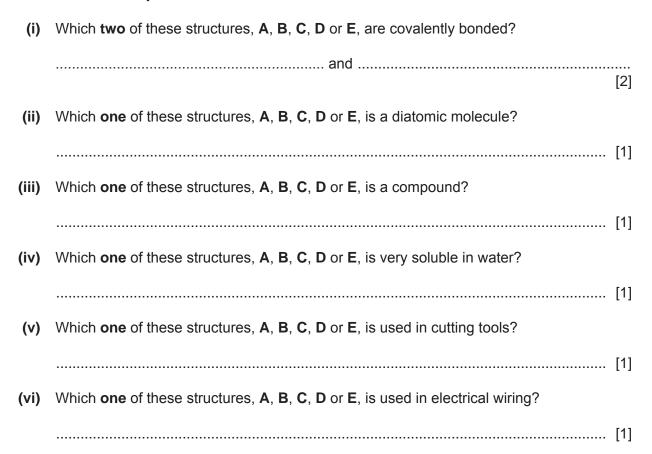

Electronic calculators may be used.

A copy of the Periodic Table is printed on page 20.

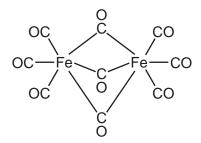
You may lose marks if you do not show your working or if you do not use appropriate units.


At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.



1 The diagrams show part of the structures of five substances, A, B, C, D and E.


(a) Answer the following questions about these structures. Each structure may be used once, more than once or not at all.

(b)	Substance B is an element.
	What is meant by the term <i>element</i> ?
	[1]
	[Total: 8]

ını	s question is about iron and iron compounds.
(a)	Name the main ore of iron.
	[1
(b)	In a blast furnace used for the extraction of iron, carbon reacts with oxygen from the air to forr carbon monoxide.
	Complete the chemical equation for this reaction.
	C + → 2CO
(c)	In the hotter parts of the furnace, carbon reacts with the iron(III) oxide present in the iron ore
	$3C + Fe_2O_3 \rightarrow 3CO + 2Fe$
	How does this equation show that carbon is oxidised?
(d)	Limestone is added to the blast furnace. The limestone is converted into calcium oxide and
	carbon dioxide. The reaction is endothermic.
	$CaCO_3 \xrightarrow{heat} CaO + CO_2$
	(i) What type of chemical reaction is this?
	[1
	(ii) What type of oxide is calcium oxide? Give a reason for your answer.
	[2
(e)	Iron is a metal.
	Give three physical properties that are characteristic of metals.
	1
	2
	3[3

(f) The structure of a compound of iron is shown.

Deduce the molecular formula of this compound to show the number of iron, carbon and oxygen atoms.

.....[1]

[Total: 11]

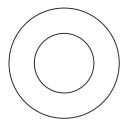
3 (a) The table shows the percentage by mass of the elements on Earth and in the Universe.

element	percentage by mass on Earth	percentage by mass in the Universe
helium	0.0	21.0
hydrogen	0.1	76.0
iron	35.0	1.0
magnesium	14.0	0.1
oxygen	29.0	0.8
silicon	14.0	0.1
sulfur	2.9	0.1
other elements		0.9
total	100.0	100.0

Answer these questions using only the information in the table.

i)	Deduce the percer	itage by mass of other	r elements present on Earth.	
----	-------------------	------------------------	------------------------------	--

	. %	[1]
--	-----	-----


(11)	Which non-metallic element is present on Earth in the greatest percentage by mass?	
		[1]

(iii)	Give two major differences in the percentage by mass of the elements on Earth and in the
	Universe.

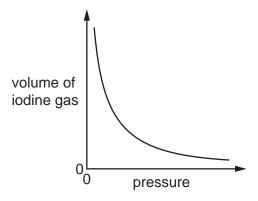
1		 						
2)							

[2]

(b) Complete the diagram to show the electron arrangement in an oxygen atom.

[1]

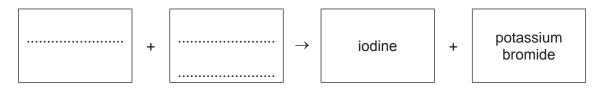
(c)	Hel	ium, neon and argon are noble gases.
	(i)	Explain, in terms of the electronic structure, why neon is unreactive.
		[1]
	(ii)	State one use of argon.
		[1]
		[Total: 7]


4	This question	is about	iodine and	compounds	of iodine
---	---------------	----------	------------	-----------	-----------

(a)	Use the kinetic particle model to describe the separation between the molecules and the type
	of motion of the molecules in:

•	solid iodine

•	iodine gas.	

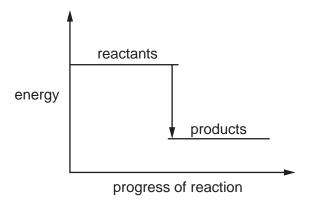

(b) The graph shows how the volume of iodine gas changes with pressure. The temperature is kept constant.

Describe how the volume of iodine gas changes with pressure.

			[4]
 	 	 	[1]

(c) (i) Complete the word equation to show the halogen and halide compound which react to form the products iodine and potassium bromide.

[2]


(ii) Explain, in terms of the reactivity of the halogens, why aqueous iodine does **not** react with aqueous potassium chloride.

......[1]

- (d) Iodine reacts with aqueous sodium thiosulfate, $Na_2S_2O_3$.
 - (i) Balance the chemical equation for this reaction.

.....
$$Na_2S_2O_3 + I_2 \rightarrow Na_2S_4O_6 +NaI$$
 [2]

(ii) The energy level diagram for this reaction is shown.

	Explain how this diagram shows that the reaction is exothermic.	
		[1]
(e)	Describe a test for iodide ions.	
	test	
	observations	
		[2]
(f)	Molten sodium iodide is electrolysed.	
	Predict the product at the positive electrode.	

[Total: 14]

5 Coal gas is made by heating coal in the absence of air. The list shows the main gases present in coal gas.

carbon dioxide
carbon monoxide
ethene
hydrogen
methane
nitrogen

Which one of these gases is an alkane?	(a) (i)
[1]	
Draw the structure of a molecule of ethene. Show all of the atoms and all of the bonds.	(ii)
[1]	
Describe how aqueous bromine can be used to tell the difference between methane and ethene.	(iii)
[2]	

(b) Et	nene molecules react	with each other to	o form poly(ethene).	
(i)	What is the name g	iven to this type o	of chemical reaction	1?	
					[1]
(ii)	Which one of the fo			molecules in this re	eaction?
	elements	mixtures	monomers	polymers	[1]
(iii)	Poly(ethene) is a no	on-biodegradable	plastic.		
	What is meant by th	ne term <i>non-biode</i>	egradable?		
(!- ·)					[1]
(iv)	Describe one pollut	ion problem caus	ea by non-blodegr	adable plastics.	
					[1]
(c) Et	nanol can be made fro	om othere and or	o other reactant		
(C) E	Name the other rea		ie otilei reactailt.		
•••					
•	State the conditions	needed to make	ethanol from ethe	ne.	
•••					
•••					[3]
					[Total: 11]

	6	This question	is about	copper and	copper	compound
--	---	---------------	----------	------------	--------	----------

(a)	Describe how you could prepare a pure sample of crystals of hydrated copper(II) sulfate using dilute sulfuric acid and an excess of copper(II) oxide.
	[3]
(b)	Anhydrous copper(II) sulfate is used to test for water.
	$CuSO_4 + 5H_2O \rightleftharpoons CuSO_4.5H_2O$ anhydrous hydrated copper(II) sulfate copper(II) sulfate
	(i) What is meant by the symbol ← ?
	[1]
	(ii) How can hydrated copper(II) sulfate be changed into anhydrous copper(II) sulfate?
	[1]
(c)	Complete the table to calculate the relative formula mass of anhydrous copper(II) sulfate, $CuSO_4$. Use your Periodic Table to help you

type of atom	number of atoms	relative atomic mass	
copper	1	64	1 × 64 = 64
sulfur			
oxygen			

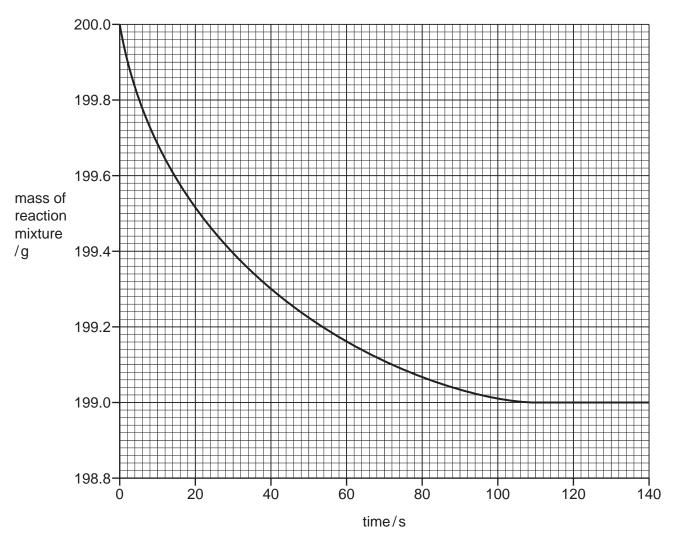
relative formula mas	ss =	
		[2]

(d) Complete the table to show the number of electrons, protons and neutrons in the sulfur atom and copper ion shown.

	number of electrons	number of neutrons	number of protons
³⁴ ₁₆ S			
⁶³ Cu ²⁺			29

17

(e)	Allo	bys of copper are used to make coins.	
	(i)	What is meant by the term alloy?	
			[1]
	(ii)	Suggest why an alloy of copper is used to make coins instead of using pure copper.	
			[1]
		[Total:	13]


7	A student investigates the rate of reaction of small pieces of calcium carbonate with an excess o
	hydrochloric acid of concentration 1 mol/dm ³ .

$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(I)$$

(a) Name the salt formed when calcium carbonate reacts with hydrochloric acid.

.....[1]

(b) The graph shows how the mass of the reaction mixture changes with time.

(i) State why the reaction mixture decreases in mass.

.....[1

(ii) Calculate the loss in mass during the first 40 seconds of the experiment.

.....g [1]

(iii) The experiment is repeated using hydrochloric acid of concentration 2 mol/dm³. All other conditions are kept the same.

Draw a line **on the grid** for the experiment using hydrochloric acid of concentration 2 mol/dm³. [2]

(iv) In the experiment, when 2.00 g of calcium carbonate is used, the loss in mass of the reaction mixture is 0.88 g.

All other conditions are kept the same.

Calculate the loss in mass when 0.50 g of calcium carbonate is used.

loss in mass = g [1]

(v) The experiment is repeated using the same mass of different sized pieces of calcium carbonate.

All other conditions are kept the same.

The sizes of the pieces of calcium carbonate are:

- powder
- small pieces
- large pieces.

Complete the table by writing the sizes of the pieces of calcium carbonate in the first column.

size of pieces of calcium carbonate	initial rate of loss in mass in g/s
	0.005
	0.030
	0.100

[1]

[Total: 7]

8

(a) Sulf	ur dioxide is a pollutant in the a	air.		
(i)	State one source of sulfur diox			F41
(ii)	Sulfur dioxide is oxidised to su Oxides of nitrogen act as catal What is meant by the term <i>cat</i>	ulfur trioxide in the air lysts for this reaction		[1]
(iii)	Sulfur trioxide dissolves in rair		ain	 [1]
(111)	Which one of the following pH Draw a circle around the corre	I values could be the		
	рН 4 р	H 7 pH 9	pH 13	[1]
(iv)	State one adverse effect of ac	•		[1]
. ,	ur dioxide melts at –73°C and at is the physical state of sulfur	boils at –10°C.		
	ain your answer.			
				FO-7

(c)	Excess sulfuric	acid reacts with	ammonia to make a salt which can be	e used as a fertiliser.
	State the name	of the salt form	ed when excess sulfuric acid reacts w	ith ammonia.
				[1]
(d)	The table shows	s some observa	tions about the reactivity of four metals	s with dilute sulfuric acid.
		metal	reaction with sulfuric acid	
		iron	a slow stream of bubbles is seen	
		magnesium	a rapid stream of bubbles is seen	
		nickel	a few bubbles slowly form	
		tungsten	no bubbles are seen	
	Use the informa Put the least rea		to put the four metals in order of their	reactivity.
	least reactive		-	most reactive

[2]

[Total: 9]

18

BLANK PAGE

19

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.

The Periodic Table of Elements

	\equiv	2 He	helium 4	10	Ne	neon 20	18	Ar	argon 40	36	궃	krypton 84	54	Xe	xenon 131	98	Rn	radon			
				6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ā	bromine 80	53	П	iodine 127	85	Ą	astatine -			
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>a</u>	tellurium 128	84	Ъо	moloulum -	116		livermorium -
	>			7	Z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sb	antimony 122	83	<u>B</u>	bismuth 209			
	≥			9	ပ	carbon 12	14	: <u>S</u>	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pp	lead 207	114	Fl	flerovium —
	≡			5	Ω	boron 11	13	Αl	aluminium 27	31	Ga	gallium 70	49	In	indium 115	81	<i>1</i> 1	thallium 204			
										30	Zu	zinc 65	48	р О	cadmium 112	80	Hg	mercury 201	112	S	copernicium
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium -
Group	-									28	Z	nickel 59	46	Pd	palladium 106	78	₹	platinum 195	110	Ds	darmstadtium -
ָ ס				1						27	රි	cobalt 59	45	R	rhodium 103	77	Ir	iridium 192	109	¥	meitnerium -
		- エ	hydrogen 1							26	Pe	iron 56	44	Ru	ruthenium 101	92	Os	osmium 190	108	Hs	hassium
										25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	Bh	bohrium –
				_	pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≥	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	4	g	niobium 93	73	<u>Б</u>	tantalum 181	105	op O	dubnium -
					atc	rel				22	F	titanium 48	40	Zr	zirconium 91	72	士	hafnium 178	104	쪼	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57-71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	ഗ്	strontium 88	26	Ва	barium 137	88	Ra	radium
	_			8	:=	lithium 7	11	Na	sodium 23	19	¥	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	占	francium

Lu Lu	lutetium 175	103	۲	lawrencium —
° 4	ytterbium 173	102	å	nobelium –
e9 Tm	thulium 169	101	Md	mendelevium –
es Er	erbium 167	100	Fm	fermium -
67 Ho	holmium 165	66	Es	einsteinium –
e6 Dy	dysprosium 163	86	ర	californium -
e5 Tb	terbium 159	26	BK	berkelium –
Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pu	plutoni um —
Pm	promethium –	93	ď	neptunium –
	neodymium 144		\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
Ce Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	88	Ac	actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).